- 1 February 12, 2018.
- 2 Physics seminar.
- 3 >>Dr. Garrison: All right
- 4 there's a sign-up sheet
- 5 floating around. Hopefully you
- 6 got a chance to, students
- 7 taking the 4372 class, hand in
- 8 your papers from last week and
- 9 I did hand them back to you.
- 10 So I want to introduce our
- 11 speaker today. I think
- 12 everybody saw the announcement
- 13 this is an interesting topic
- 14 about parts of re-usable
- 15 spacecraft. One of the reasons
- 16 we invited Wes Kelly today is
- 17 we bandage talking for a while
- 18 about internships with UHCL
- 19 students. This is one
- 20 motivation you get a chance to
- 21 hear more about what they are
- 22 doing and if this is something
- 23 you might want to join in and
- 24 become part of, then you have
- 25 people to talk to right now.

1	Quickly his bio. Wes Kelly and
2	associates founded Triton
3	Systems to develop easier
4	systems and for simple and
5	commercial space projects.
6	Since the 70s he participated
7	in design programs for
8	spacecraft local and across the
9	country. Sometimes examining
10	astro physical as well. He
11	obtained his bachelor's from
12	University of Michigan and in
13	arrow astro from University of
14	Washington. Written over 20
15	publications and contributed to
16	articles on aerospace and
17	astronomy for the local AIAA
18	providers newsletter. With
19	that I'll turn it to wes.
20	>>Dr. Kelly: Thank you Dr.
21	Garrison. So I'm happy to be
22	here tonight and also happy to
23	say some of our colleagues are
24	here as well to join us tonight
25	from the (indiscernible) with

1	Mr. Ricky Smith, our test pilot
2	and 70 Christopher Vice
3	President of the organization.
4	Both active on issues and
5	one of the interns at Rice and
6	jet propulsion I'll tell you
7	about later.
8	KATE (Writer): (Having a hard
9	time hearing, audio very
10	muffled)
11	>>Dr. Kelly: Going back to the
12	abstract historically the news
13	launch systems that had their
14	(indiscernible) go in and out,
15	there have been variations of
16	approaches and one of the
17	prominent forms is to have the
18	re-usable like the shuttle and
19	this case wants to define craft
20	and rocket (indiscernible) but
21	this is not copied very often
22	especially when it come to
23	horizontal take off and
24	landing. When you fly through
25	the immediate trajectory and

1	the aircraft in an airfield
2	somewhere. We have within
3	examining this approach for a
4	number of years and I'11
5	explain why. But the concept
6	is to start with the size of
7	the gulf stream three. My
8	colleagues have a lot of
9	experience with this. Depends
10	on what airfield you have
11	available and hallow.
12	Several applications should be
13	promising, most immediate is
14	the deployment of small
15	satellites. I don't have to
16	tell you about that, seems like
17	everybody at the university is
18	trying to figure out how the to
19	get it into orbit.
20	So as our design is ensured we
21	are looking at the flight
22	design not only the trajectory
23	and some of the material issues
24	the aerodynamics and
25	electronics. I'll give you

1	some perspective on this
2	besides what you might read on
3	the newspaper and a summary
4	report.
5	Back if 2007 I was at a
6	conference on the west coast
7	NAII, this is a national
8	organization for aerospace
9	engineering. This convention
10	had a few thousand people there
11	and the chairman or the
12	consulting organization, the
13	aerospace corporations gave a
14	key note address. The I gave
15	a was supposed to follow
16	somebody else. The only thing
17	I remember is he's the guy that
18	(indiscernible) (inaudible).
19	Everybody else got out. Room.
20	He was talking about future
21	direction of aerospace out to
22	be in this country. Saying
23	well, you have to choose a
24	middle path. Or in this case
25	we had a path to the right.

1	And previously we had a lot
2	expendable launch
3	(indiscernible) and then some
4	of the plans looking at
5	re-usable launch vehicles. The
6	best approach he found would be
7	partially re-usable. That's
8	what I'm here to talk about.
9	But there was a catch. The
10	idea was the vehicle was
11	supposed to take off
12	vertically. I said he no, and
13	for many years after, because
14	this seems to be more interest
15	in take off and landing.
16	Now, horizontal or partially
17	re-usable vehicles have been
18	around for a number of years.
19	This is an old textbook I found
20	somewhere that was published
21	back in 1960. Most of these
22	studies are the vertical launch
23	as indicated to the left. Then
24	some discussion about taking
25	off horizontally and obviously

1	it was wrong. But I have a
2	question for you: If you go to
3	a conference and several
4	(indiscernible), how many of
5	you arrive in vertical take off
6	and landing. You got to a
7	conference out of town and
8	horizontal take off. I expect
9	quite a few but basically
10	because we have devices, the
11	737 here does quite well
12	cruising along and subsonic
13	speeds, 35,000 feet and
14	economic. Planning for
15	partially re-usable launch
16	vehicles, their components
17	exist. Wings. If you look to
18	the right here this was the
19	concept of electric rocket
20	boosters with wings. The idea
21	was to take off vertically
22	(inaudible, OFF MIC) Back in
23	1990 but it didn't happen. But
24	the launch system liftoff to
25	make it work. We were

1	representing this idea in the
2	year 2,000 or so, we used a
3	drawing like this. This is
4	altitude over here and a
5	vehicle taking off and flying
6	under TURBO FAN propulsion and
7	getS up to CRUISING ALTITUDE OF
8	A 737 AND LIGhts its rocket.
9	The rocket coasts and then this
10	is the upper stage and comes
11	back down to the horizontal
12	landing.
13	What's interesting about this,
14	at the time it was AGAINST
15	CONCEPTS FOR small satellites.
16	IT might cost \$20,000. If you
17	had a thousand pound satellite
18	going up on a Pegasus rocket,
19	might be 1,000 pounds,
20	\$20 million or so. So whether
21	you can beat that price or not
22	there's still problems.
23	So here's what our concept
24	looks like. You may have seen
25	the video before I started

1	talking that went through the
2	sequence.
3	(AUDIO MUFFLED)
4	>>Dr. Kelly: We gave a
5	presentation for horizons. If
6	you notice in the lower point
7	there's a lot of sketches of
8	the trajectory and how it
9	varies and I'll get into that
10	more in a moment.
11	The upper stage flight is
12	illustrated by the darkening
13	sky and the upper stage goes to
14	satellite. We have a couple of
15	organizations, maybe three or
16	four that are interested in
17	flying with us (inaudible).
18	But I'll pull the brakes for a
19	moment. Is this for real? Is
20	this something like a unicorn?
21	Or is there something there?
22	Well, let's look at some other
23	vehicles that have horizontal
24	profiles and trying to go off
25	into space. Back when I was a

1	kid in the 60s, late 50s, the
2	X15 was released from a B52,
3	about 35 to 40,000 feet. Fly
4	up to about 6,000 feet per
5	second and what's indicated up
6	here. They had another flight
7	path they fly at 70,000 feet at
8	the same speed. They would
9	heat up at that speed. The
10	higher the trajectory it's more
11	(inaudible, PERSON COUGHING).
12	They did this with three
13	aircraft in a period of several
14	years and there were about 200
15	flights. So operationally it's
16	a can do. So here's a vehicle
17	that never flew. Like the
18	little engine that could. A
19	lot of data associated with
20	this. Just short of flying and
21	we have some members \ensuremath{FLYING} and
22	we you see that feature
23	right there. The red, there's
24	a roller coaster ride and I
25	believe that's the larger wing

1	span. The delta wings caused
2	it to glide farther.
3	Other hardware we might see the
4	Shuttle Endeavor flew into
5	Houston in 2012. It was nested
6	on top of the 747. It was
7	released at 20,000 feet for
8	approach and landing tests and
9	then it was carried across the
10	country to various launch
11	sites. This is not the shuttle
12	but a vehicle like it. It
13	actually took off. It was the
14	version of the same thing on
15	display in Germany. A friend
16	of mine sent it as a note. And
17	it had four tush bow jets that
18	flew up to maybe 20,000 feet
19	and did it's approach test the
20	old fashioned way.
21	There's another point in favor
22	of take-off and landing. If
23	you are going to do this it has
24	to be for a reason (inaudible,
25	OFF MIC). Normal take off with

1	wings everything, jet engines,
2	it makes sense if it satisfies
3	a certain criteria. Rocket
4	engines on board have high
5	performance and impact
6	economical but expensive to
7	manufacture, you want to get
8	them back. There's a lot of
9	reasons why space flight is
10	expensive, all of that hardware
11	in the Atlantic Ocean. And the
12	criteria for looking at the
13	effectiveness of a rocket
14	engine in terms of this
15	so-called rocket equation which
16	is in red up here. The first
17	stage and start and so-called
18	specific impulse I with the
19	subscript SP. As that
20	increases the mass DIFFERENCE
21	INCREASES and you have more
22	payload left. You get more
23	lift when you are going back
24	thanks to the jet engines you
25	get to an altitude more

1	economically because they are
2	effected by the speed it's ten
3	time higher than a chemical
4	rocket.
5	Also the so-called recurring
6	and nonrecurring costs referred
7	to as RDT and E, there are
8	competitive systems. And
9	missions that are attracted to
10	this for the right size and
11	ergonomics and environment.
12	And the vehicle is flexible,
13	versatile to go after these
14	projects.
15	Now these two gentlemen are
16	probably people that are
17	referred to as important people
18	you probably never heard of. I
19	wouldn't if I didn't get into
20	this business at the right time
21	and ended up at the right
22	place. Valentin Petro Glushco
23	and nikolai, they were in the
24	Soviet union and developed
25	rockets. But they had the

1	distinction of building the
2	most remarkable engines of the
3	20 century. This country for
4	space operations they
5	probably had longer lives
6	recent times is with the space
7	shuttle main engine burns
8	liquid hydrogen oxygen. It was
9	aerospace than kerosene.
10	(audio very muffled)
11	The basic stage system turbines
12	and partially burn propellant
13	oxidizer into the combustion
14	chamber which is higher
15	pressure than the alternative
16	which is called gas generated
17	where that fluid was dumped
18	over the side. So these are
19	high energy systems and the
20	fact they come up with these
21	was probably something
22	difficult to compete in this
23	country but was an opportunity
24	for a reasonable rocket
25	systems.

1	So here's our answer. And this
2	is a vehicle that we propose to
3	develop here in the Houston, I
4	should say, even more
5	specifically the ellington
6	field. Looking at the X34
7	image we had earlier you go up
8	and down with that roller
9	coaster, angular cap for the
10	various flights, six or seven
11	Mac and an altitude which is
12	high as the edge of space. I
13	think the trajectory I've been
14	writing is 320,000 lately.
15	The verse tilt features of this
16	vehicle, you can go off any
17	direction, with an airplane you
18	are not a speeding bullet. The
19	up per stages you can carry
20	from the initial tip toes or
21	treading into water and the
22	upper stages. And the
23	capability of the launch site.
24	There's a hurricane in one part
25	of the country, take off with

1	this vehicle ab land it in an
2	airfield there. And you can do
3	flight TESTS without ignition
4	of the rocket because of the
5	commercial aircraft engines
6	should do the jobs for TO GET
7	YOU UP TO ALTITUDE
8	(inDISCERNIBLE) or you can see
9	the properties of the
10	(INDISCERNIBLE).
11	So I guess I probably explained
12	most of why we do this. The
13	reasons we just discussed.
14	Market consideration. This is
15	a great time for launch
16	vehicles. Scalability. And if
17	you want to have an alternative
18	to say Space X doing everything
19	in the future like standard oil
20	did for petroleum might be
21	interested in alternative such
22	as a horizontal take off and
23	landing. Although I admit I
24	admire the demonstration done
25	last week.

1	This is, I'll say these are
2	graphs, there's a corresponds
3	to events in the flight phases.
4	The ignition here. The beam
5	point here. We have areas
6	where you get the rocket engine
7	started.
8	Now, from the commercial
9	standpoint we have found a
10	summary the so-called Stellar-J
11	elevator presentation. MIT
12	enterprise forum downtown,
13	essentially you try to send up
14	everything that you are trying
15	to do for a potential investor
16	on an elevator ride. This is
17	the world trade tower. The
18	idea is the small satellite
19	user community needs an
20	inexpensive reliable launch
21	system. That can grow with the
22	user. Cultivate capabilities
23	for the future such as
24	rendezvous or return cargo.
25	Maybe those are not the only

1	things but you have to
2	anticipate something. Besides
3	the community both domestic and
4	foreign is large. Small
5	companies want to large
6	satellites and more people are
7	building (inaudible). Civil
8	military offICES have a Need
9	for a satellite. Research
10	institutes, universities and
11	related research such as down
12	the street with planetary
13	science and the organizations
14	associated with that, and
15	potentially University of
16	Houston clear lake. So our
17	approach is a horizontal take
18	off and landing first stage
19	with wings and jet engines.
20	Rocket burn from airline cruise
21	to typical booster rocket
22	staging. As big as an air bus,
23	like a 380, IT'S hard to find a
24	place to land. Payload is
25	(inaudible, AUDIO MUFFLED).

1	And that would be
2	(inDISCERNIBLE).
3	So what is the virtue of the
4	rocket engines (inaudible).
5	(Off mic). I'll give you the
6	answer. It takes the work out
7	of thing I just mentioned. If
8	you are 40,000 feet closer to
9	your trajectory there's work
10	involved get there. If it's on
11	the left side that indicates
12	there's a (off mic). No work
13	is going into and the energy is
14	something that is flying along
15	the at sphere at 2000 feet
16	there's work involved and less
17	work to get to that orbital
18	station from the flight to the
19	ground.
20	I'm going to veer off again
21	myself and look at this a
22	little differently than what I
23	was going to continue to do
24	because this is an organization
25	involved in physics. And some

1	of that is related to research
2	and I often look at emails at
3	the tail end you have professor
4	Garrison send (indiscernible).
5	If we knew what we were doing
6	it wouldn't be called research.
7	We will talk about an episode
8	like that. Most of the talk is
9	about design and analysis. You
10	see what happens when we change
11	this. That's what a lot of
12	this will involve. Finally
13	there's the development phase
14	and people looking at charts
15	and saying let's look at the
16	results and the schedule. And
17	then finally (inaudible).
18	Several years ago working with
19	a subcontractor on a contract
20	with (indiscernible) looking
21	at propulsion systems they were
22	interested in beam energy. I
23	didn't know much about it so I
24	started to check it out. So we
25	were looking at how beamed

1	energy can be used to propel
2	upper stages on rocket systems.
3	And the idea that either you
4	launch on the ground and maybe
5	on an upper stage where you
6	have a beamed energy propulsion
7	system using hydrogen as a fuel
8	and laser beam and microwaves
9	cause us to exit of high energy
10	or you are in orbit and doing
11	this. So we wanted to see if
12	there's anything we can learn
13	about it. We studied the
14	projects. Looked at the
15	geometry. If you get a chance
16	to look at this you might mind
17	it interesting. Basically
18	there's a window where you can
19	get the ground site and see a
20	spacecraft or orbiting
21	satellite coming over the
22	horizon. The question comes
23	down to if you have this for an
24	upper stage can you take
25	advantage of it. So we

1	compared the characteristics of
2	beamed energy which might be
3	higher specific impulse than a
4	chemical engine and saw that
5	trajectory on a finite burn,
6	the dynamics, not just the
7	calculation, but the
8	integration. And various
9	colors indicate which of those
10	we are talking about. 500,
11	600, 800 seconds is the most
12	efficient. And these are the
13	trajectories down here. Where
14	the Stellar-J comes into the
15	act is if this beam is coming
16	from a ground station on an
17	island or aircraft battleship
18	you have choices you can fly
19	over that site. You can fly
20	out in some direction and go to
21	switch backs. But when you
22	came over that flight where the
23	laser beam was you can aim your
24	trajectory in a way you can get
25	this all as REGION we have

1	been talking about. (AUDIO
2	MUFFLED) Look at the impulse
3	how much weight payload would
4	be left. Also see how many
5	mega watts you have to direct
6	in that direction if you have
7	100 percent efficiency. Say
8	from 4,000-pound system from
9	the Stellar-J we are talking
10	about a 30-megawatt system on
11	the receiving end. When you
12	look at the system you find
13	there's various ways you can
14	have problems. Now we got to
15	talk to the designing analysis,
16	engineering in other words.
17	And I try to do this in a
18	hierarchal approach, staying at
19	the top of the pyramid for sake
20	of argument and computer tools,
21	some discussion about which
22	ones you use and why. And then
23	the output behavior. And what
24	you would get out that have
25	would be trajectories that

1	would determine how you layout
2	your vehicle. Mass property,
3	aero thermodynamics, control
4	systems, materials, hardware
5	such as wings, jet engines,
6	several protection systems.
7	Beyond that if we have time or
8	interest it would be missions
9	and markets criteria for
10	trades.
11	This is going to local type of
12	trajectory simulation. That's
13	what you use in the aerospace
14	community. But there's a
15	couple of problems. First is
16	it's directed to minimize the
17	time or fuel expended between
18	two points trying to optimize
19	the trajectory, doesn't tell
20	you about the design or how big
21	the wings are. Just tells you
22	how to use it efficiently. So
23	a whole lot of my experience,
24	not really getting down to the
25	fast tracks of how these are

1	designed. That's important. I
2	want to emphasize that. Ways
3	to which jet engines and
4	rocket engines are separate
5	neighborhoods. They hardly
6	talk to each other. If there's
7	a tool like (indiscernible)
8	you won't have a JET engine in
9	there or a simulation of an
10	aircraft. And vice-versa,
11	simulating aircraft they don't
12	have much to tell you about
13	rockets and how to maneuver
14	them. So we have to develop a
15	system of our own. We started
16	a number of years ago and you
17	have inputs, there are kind of
18	succinct but we feed to
19	describe the vehicle we are
20	talking about and change and
21	the data files (inaudible) SO
22	we can tweak them because we
23	run them again and because
24	things we look at, all the
25	things we want to know ABOUT

1	AND THEN (inDISCERNIBLE).
2	Basically these would result.
3	Trajectories such as this where
4	you would have first stage
5	thrust level, altitude,
6	expendable upper stage, and you
7	keep track of it. And the two
8	stages combined. And then what
9	the weights were delivered into
10	orbit, mass fractions for the
11	up per stages. But the
12	aircraft portion you had to
13	have something trying to lift,
14	drag, thrust and gravity.
15	(inaudible). And others
16	features such as glass.
17	These are some of the principle
18	GLASS (inaudible) the
19	capabilities of the vehicle.
20	First is the time that the burn
21	on the trajectory. Ninety to
22	135 seconds, you can get so
23	much velocity and altitude at
24	the end of it and that reflects
25	the payload you will have

1	taking orbit.
2	B is when you come back down
3	what is the end of the
4	(inaudible, OFF MIC). Which
5	one is it suited for. Two
6	things to consider at least.
7	The range, heating and possibly
8	the how many Gs (inaudible). D
9	is what happens when you
10	banking the vehicle when you
11	come back, how much range you
12	get, which airports can you
13	reach or take off from and how
14	much do you have to (inaudible)
15	on that.
16	Other issues are heating. And
17	dynamic pressure. With the
18	shuttle is talking about
19	700 pounds per square foot or
20	something of that nature. You
21	will see aircraft here in
22	Houston an air show as they
23	flyby. So we keep track of
24	that as well. And the heating
25	comes back down or going up in

1	terms of square foot per second
2	we figured we have a be sign
3	and the scram jets hang around
4	in the atmosphere and they get
5	pretty high.
6	There's also consideration that
7	where this geometry is, now if
8	you have a vehicle that has a
9	delta wing and vertical tails
10	and various sweeps on these
11	features, the heating is going
12	to be effected by what the
13	sweep angle is and with respect
14	to the angle of the TACK and
15	the wing. It's going to VARY
16	on the geometry, which way it's
17	pointing.
18	This is an analytical
19	relationship here. Based on
20	formula I don't see on there
21	and can talk about later. But
22	there's contours you can look
23	at the vehicle and see based on
24	the radius of the sweep angle
25	and the atmosphere how much you

1	you have to integrate it all
2	together AND MAKE DECISIONS.
3	Then the range itself besides
4	the thickness, how much lift
5	does it have. NASA has quite a
6	collection of a slice out of
7	the wing, I guess the
8	projection of the wing going in
9	the Y axis. And it has some
10	influence on how much lift you
11	will generate and the areas on
12	the wing and we take them
13	together and for a finite wing
14	theoretically at the wing and
15	various angles and speeds
16	This is all great but it does
17	come to an issue that comes up
18	and (INAUDIBLE, off mic). All
19	the people part of the
20	community know how many pounds
21	you can deliver in orbit. They
22	do it based on a configuration
23	and say I can get this much.
24	And you think that's great.
25	Get down to it and how much is

-	
1	my wing going to way on the
2	design and the features and
3	what it will look like inside
4	and how much you realize
5	your orders of magnitudes is
6	delta of a couple of pounds.
7	You have to worry about the
8	wing and how it's built.
9	Roughly they take about
10	10 percent of a vehicle total
11	weight couple of exceptions.
12	The basic components of the
13	wing structurally fall into
14	four categories. Skin, spars
15	RIBS AND (indiscernible). The
16	ribs are lined along the axis.
17	The spars go out along the
18	span. So you call that Y axis.
19	And the strings are lower order
20	magnitude. The first three is
21	the one we concentrate on.
22	In addition to the spars and
23	ribs are they going to have
24	sweep and HAVE GLASS, how do
25	you get the (indiscernible) if

1	you have sweep? So YOU HAVE TO
2	FIGURE OUT what do you do about
3	the SPARS AND THE ribs.
4	(inaudible, AUDIO MUFFLED). As
5	I SAID TO my colleagues AT the
6	GMC community, this thing OFF
7	to the right, THIS DIAGRAM is
8	not a wing. It's KIND OF Stuck
9	in there, but it's a stress and
10	strain diagram based on all of
11	those cantilever beams they are
12	lookING at. Some of cantilever
13	and some are beams connected to
14	other beams. So when we look
15	at modern aircraft it looks
16	like an elaborate mesh. You
17	may have encountered this in
18	statics so did I a number of
19	years ago and forgot about it.
20	Then during a lapse of activity
21	I had to study this all over
22	again and found it fascinating.
23	Basically Young's MODULUS
24	analysis and the slope this
25	diagram for a material. There

1	are materials of interest and
2	besides stress and strain we
3	are worried about what it would
4	be like (inaudible, off miC).
5	How much these lose strength
6	based on alloys and solid
7	temperature. If you have a
8	room temperature strain and a
9	temperature that you know where
10	this effect is or liquid
11	formation like the alloys a
12	boundary, you know don't
13	extrapolate strength beyond
14	that temperature.
15	Working in the industry, one
16	thing that happened is the
17	reorganized more in space
18	(indiscernible). Delta wings
19	problems we saw in the 50s and
20	60s. Samuel Levy was crucial
21	for delta wings. That one
22	vibrated beam or one that
23	deformed, I guess there's
24	displacement at the end,
25	elasticity. Because they are

1	working together in a system of
2	equations, but the
3	(indiscernible) is that he came
4	up with methods that are
5	amenable to small computers at
6	the time and still can be used
7	today. And the remarkable
8	thing is I'll go back.
9	Basically what they did with
10	these models the B58 no matter
11	how you feel about the nuclear
12	war, it's an interesting
13	aircraft because it has delta
14	wings high technology. And
15	these modeling methods were
16	able to predict how it deformed
17	under load. So practically you
18	can do it with a laptop. If
19	you know what you are doing.
20	And he (indiscernible). But
21	in setting up a delta wing
22	there are a number of
23	approaches you can take. Spars
24	going up and fuselage AS WELL
25	and if you (indiscernible) the

1	deformation at the end IS GOING
2	TO GROW IN POWER.
3	(AUDIO very muffled)
4	You see an evolution here is
5	the B58 I was speaking of.
6	This is a report by colleagues
7	that drew on Levy's work and
8	showed how to predict loads
9	with a matrix method and they
10	got close results to what is
11	seen in (indiscernible).
12	Now, I looked at this diagram
13	and I thought maybe I can
14	rearrange it. Basically they
15	had displacement, slope of the
16	beams, the reach of the spars
17	and the moments and the shears.
18	Let's hold that thought.
19	Here's a F15 that has three or
20	four spars, I guess five or
21	maybe six visible ribs so that
22	might be an indication of a
23	workable system.
24	Here's a space shuttle it's
25	interior wing and we see 11

1	grids and four spars, four spar
2	system we will be willing to
3	look at. Here's an
4	rearrangement of that system.
5	It's along the diagonal you
6	have a sparse region here so
7	you can treat this and simplify
8	it considerably. A lot of
9	spaces are just simply null.
10	It's encouraging. So if we get
11	a larger system, here we
12	changed it to reactive force at
13	points A and B on the spar.
14	And moments are involved. And
15	Displacements. So you have a
16	system and these smaller
17	matrices and you can start
18	looking at loads and get some
19	sample calculations. Did I get
20	any answers? Well, I used some
21	free algebraic manipulators. I
22	found it difficult and ended up
23	with a lot of algebra. But all
24	the same, we are interested in
25	the sensitivity of the

1	displacement with the
2	temperature conditions. And
3	these are analytical solutions
4	you can obtain. I did a lot of
5	work on this. There's promise
6	to this method.
7	Some textbooks that are useful
8	for this study, the aircraft
9	dynamics and automatic control,
10	I would like to point this
11	textbook out because it
12	examines a number of aircraft
13	in great detail, their
14	structure, the arrow dynamics.
15	The aerodynamics are useful in
16	this book and rocket propulsion
17	elements as well.
18	The reason I mention this what
19	we are trying to do with the
20	Stellar-J is create the same
21	matrices, the same descriptions
22	of these ten, 15, 20 aircraft
23	examples. If you go to NASA
24	(indiscernible) they have 100
25	aircraft like this, they will

1	tell you about the spars, cross
2	sections of the spars. But
3	they add up to a system of
4	equations that are
5	characterized by all the design
6	decisions that you make, and
7	the stability of the aircraft
8	and various stages of flight
9	are indicate the by these
10	columns. So we are doing the
11	same thing. Maybe a dozen
12	phases with the Stellar-J
13	looking at what it's doing on
14	different structures.
15	Geometrical inertial
16	parameters. Longitudinal
17	dimensional derivatives.
18	Lateral dimensional
19	derivatives. What happens when
20	you deflect the elevon, the
21	aileron and the rudder when you
22	have to switch them?
23	Second-order differential
24	equations you are dealing with
25	and solutions and the response

1	and frequency and the damping.
2	You have in this case the
3	simple analysis procedures that
4	are used in aerospace. You
5	have four solutions for each of
6	these systems, lateral and
7	longitudinal. Some maybe
8	oscillatory and some not for
9	the longitudinal and
10	(indiscernible) and
11	oscillations.
12	To get to the point where the
13	vehicle is well based we are
14	trying to get the components of
15	the vehicle modulator. When we
16	discover we have a problem we
17	can trade them out. Or search
18	in the right direction.
19	Recently did a lot of work for
20	us including the simulation we
21	had at the beginning showing
22	the phases of flight. Now
23	illustrated the effecters it's
24	aerospace to look in the back.
25	The rudders they can use

1	they can be used for turning
2	(indiscernible). They are
3	still not sure whether they are
4	going to use rudders, it maybe
5	two complicated. Early stage
6	we are looking how they can all
7	be tied together including
8	thrusters because we are moving
9	to the edge of space. In doing
10	all this trying to keep track
11	of all the mass properties and
12	then during the various phases
13	of flight we have principles to
14	collect this information, how
15	much the vehicle weighs, where
16	the mass is distributed.
17	Whether it has the upper stage
18	and to keep track. There's a
19	certain size booster we maybe
20	flying. And then the first
21	stage (inaudible). If it
22	advantageous than pumping it
23	later as indicated in this
24	diagram.
25	Here's the larger scale. You

1	can see the layout of sub
2	systems. And some of the
3	choices you are examining for
4	the ribs and spars and this
5	case an introductory case we
6	have a sweep on the spars and
7	we will look at the
8	perpendicular cases as well.
9	To the left is a blow up of the
10	airfoil contours for the CA
11	(inaudible) not to scale XY.
12	We have two stages RATHER THAN
13	ONE STAGE. Stages more
14	efficient in payload and
15	acceleration. And also we get
16	a liquid booster instead of
17	solid. Here's an attempt to
18	keep track of all the mass
19	property. The programs try to
20	talk to each other on
21	solutions. Here's an
22	indication we can be doing
23	ferry flights from say from
24	Houston to KFC and carry the
25	booster on top of the vehicle

1	and maybe have a carry load
2	to increase the lift to drag
3	ratio by decreasing THE DRAG.
4	There's an indication of how
5	the reaction control system
6	might work. I did this 20
7	years ago and how it works.
8	You can see it with the tiny
9	red lights (INAUDIBLE, off
10	mic). The vehicles that
11	separate, this point we have an
12	active WAY TO move the
13	Stellar-J from the stage when
14	they are coasting the upper
15	stage. But to get away from
16	the upper stage you have to
17	(indiscernible). And after
18	that while coasting back to the
19	atmosphere you need some
20	control. So you have control
21	laws you have to use and the up
22	per left it indicates which way
23	the thrusters point.
24	Then a few more minutes to talk
25	about aerodynamics. Despite

1	it's high low lift drag
2	ratio the shuttle orbiter has
3	something to tell us about the
4	Stellar-J.
5	It's CG was center of gravity
6	getting all of this mass
7	concentrated so the center
8	gravity was BOXED. IT'S
9	located two-thirds in the back
10	of the vehicle. Various
11	flights to keep track of
12	(INDISCERIBLE) not a reference
13	for a system of 1140 inches
14	downstream on an X axis. And
15	then had some z displacement as
16	well. I won't get into that
17	too much. We tried to do
18	something similar and replace
19	our CG, I should back off on
20	that. That would be the
21	aerodynamic center for the
22	vehicle.
23	There's root chord center and
24	you can see the length of the
25	tip and root chord. The

1	reference area of the vehicle
2	is defined from the orbiter and
3	Stellar-J at the air of these
4	trapezoid features. Despite
5	this, if you look at the
6	orbiter the wings it comes down
7	to that's driving the
8	referenced area. The
9	calculations of the lifted
10	generated with various things
11	intact based on the finite
12	winning these are calculations.
13	This is where I wanted to draw
14	your attention. The
15	aerodynamic data, the base
16	area. I'm a little suspicion
17	about the area of the six
18	square feet. I would say the
19	Stellar-J is with or without
20	the upper stage. But that
21	gives us an indication of how
22	to calibrate our vehicle in
23	terms of aerodynamics. And the
24	(INDISCERNible) is supplied in
25	a 1,000 page document.

1	To wrap up with jet engines
2	trades, we have determined we
3	have three at least three
4	engines we are looking at.
5	From the Rolls-Royce family. I
6	think it's a 550
7	(indiscernible). But this is
8	the oldest, midway and each has
9	higher thrust. Now, it's a
10	question of keeping your eye on
11	the doughnut and not the hole.
12	The thrust is high altitude.
13	As much potential energy as we
14	can we want. So we want to
15	know how fast we are flying
16	with altitude and how much
17	thrust we can obtain.
18	So there's parameters
19	associated with the jet engines
20	and there might be enough to be
21	manufactured. (indiscernible)
22	is HERE with us tonight, but
23	she is STUDYING ON EXAMS AND
24	SHE working on this particular
25	intern program. We made some

1	progress over the last month or
2	so. Besides the simple issue
3	of how much thrust are we going
4	to get, the methods we have
5	been using is analytical
6	hierarchy in the past. Even
7	starting this program look at
8	what way to extend our efforts
9	as far as what payload to go
10	after and what do we think is
11	the best. We sort of have
12	several parameters we have
13	looked at. And we have to
14	grade them and decide which one
15	is the 34069, best choice.
16	Well I can't tell you what the
17	best choice is right now for
18	jet stream engines. And maybe
19	more will qualify as well.
20	Maybe it makes sense to have
21	four engines instead of two.
22	But engines over the decades
23	have changed and we have to
24	have a way of evaluating and
25	not make a quick decision by

1	simply pulling them out of a
2	hat.
3	So far without taking into
4	account certain elements of the
5	engine cycle we have got where
6	drag and altitude crosses the
7	line. 6,000 pounds,
8	5,000 pounds are indicated by
9	red and orange and as we have
10	the engines modeled thus far,
11	basically what they are doing
12	is extrapolating from the
13	static thrust in the ground
14	taking into account the fact
15	there's a turbo jet and a turbo
16	fan with a bypass ratio and so
17	if you can calculate what the
18	thrust is based on your
19	assumptions about those two
20	features, based on temperature
21	and exhaust and how much
22	exhaust there is, we can make
23	an extrapolation and say how
24	much thrust we get in altitude
25	based on the (indiscernible)

1	DENCTTY AND atmacabase these
T	DENSITY AND atmosphere. Then
2	we have to go into more detail
3	for stagnation and flow of the
4	air and the corresponding
5	temperature and the stations
6	(indiscernible). So we expect
7	these answers to change. I
8	think actually they might go
9	higher. But we will see. Is
10	he this is just another look at
11	a tracing from the standpoint
12	you are doing this with a car.
13	You have four or five criteria
14	and we identified seven.
15	Capability to high altitude
16	(indiscernible) reduce Delta V
17	from the upper stage, weight
18	ever the engine. How much fuel
19	is consumed to get to where you
20	want to go. And the issue of
21	range. After the satellite is
22	deployed when you are going
23	back the game changed. You are
24	not looking for altitude you
25	are looking for range and you

1	will take anything you can get.
2	So you have to balance what you
3	can get. The ends conditions
4	versus initial conditions. The
5	cost per unit. Do you want to
6	bankrupt and the liability.
7	And restart. Something we had
8	long conversation with.
9	Mr. Smith and Mr. Christopher.
10	Some of the investments are
11	interested in that as well. Is
12	this going to crash on return
13	some of course the operating
14	right which is effected by the
15	liability.
16	well, I think I'm done for now.
17	I'm going to skip over this
18	document search and can include
19	our talk and turn it over to
20	the audience and whatever
21	transpires from here. I thank
22	you for your attention and
23	enjoyed having this opportunity
24	to speak with you.
25	(APPLAUSE).

- 1 >>Dr. Garrison: Questions?
- 2 >> (inaudible) have you
- 3 considered (inaudible).
- 4 >>Dr. Kelly: (Off mic)
- 5 (inaudible).
- 6 >> Horizontal take off and
- 7 landing, have you considered, I
- 8 know (inaudible) once you get
- 9 to the.
- 10 (INAUDIBLE, Mic too far away).
- 11 >>Dr. Kelly: You have
- 12 positives and negatives
- 13 (inaudible).
- 14 >> (inaudible).
- 15 >>Dr. Kelly: (inaudible) at
- 16 this stage you go through a
- 17 commercial space
- 18 (indiscernible), they are
- 19 pretty detailed. (inaudible)
- 20 after a number of years you can
- 21 advance the (indiscernible).
- 22 >> At some point during the
- 23 supersonic, even though the
- 24 engines are near the back of
- 25 the plane if there's still a

1	problem with the shock wave
2	would you be (inaudible).
3	Would that
4	>>Dr. Kelly: The
5	(indiscernible) would
6	transition. How much shielding
7	or diversion (indiscernible)
8	we need on an after that.
9	Coming back out we have
10	20-degree angle tack, you can't
11	see that. The advantage of
12	high altitude the density and
13	pressures are going to
14	(indiscernible) and the net
15	portion of the trajectory is
16	only several hundred seconds
17	all together with the flight.
18	So the major problem maybe
19	solvent. I refer to the least
20	amount of metal as possible.
21	>> A lot more friction (PH).
22	>>Dr. Kelly: And then finding
23	a turbo jet with
24	(indiscernible) turbo jet, I
25	know they are out there, but

1	then you got the specific
2	shield consumption higher it
3	might be three or four times as
4	high, so then the
5	(indiscernible) you have to
6	carry to the point to has to
7	be evaluated. Just like with
8	the jet engines trade at the
9	back. You can look at it
10	but then the drag after you
11	transonic the drag goes up
12	considerably and wonder if it's
13	worth is it with a lighter
14	rocket.
15	>> Have you considered any
16	(inaudible).
17	>>Dr. Kelly: Yes. We have
18	tried a we talked about
19	(indiscernible) and a couple
20	directors had conversations
21	with them, and
22	(indiscernible)
23	(microphone muffled).
24	Anybody else?
25	>> (inaudible).

1	>>Dr. Kelly: The upper stage.
2	Let me see if I can find this.
3	See right up here, it would be
4	under that. That's a payload
5	carrier, I guess in the
6	animation we had earlier the
7	(indiscernible) might drop off
8	earlier than indicated because
9	we are high altitude, generally
10	my ballistic launch vehicle
11	days some of them drop off
12	200,000 feet halfway to orbit
13	as far as the velocity is
14	concerned. And longer you
15	carry the more penalty it
16	entails. Maybe get a clearer
17	picture from the schematics
18	I want to indicate that
19	structural and the concerns
20	there we go. So that would be
21	two spherical stages rocket and
22	nozzle and right under here
23	would be an engine. You could
24	crank up the
25	>> (inaudible).

1	>>Dr. Kelly: That's Ellington
2	there I hope in the near future
3	if we went to 135 seconds it
4	would be sometime after
5	185,000 feet. The lowest I
6	looked at 185,000 feet.
7	>> During separation
8	(inaudible).
9	>>Dr. Kelly: There are
10	clusters on the main stage that
11	are located on the vehicle. So
12	the upper stage
13	(indiscernible). Well, this is
14	kind of new territory in a way
15	because the control systems
16	on mostly (inaudible) thrust
17	directions (indiscernible).
18	Solid rocket (inaudible) (off
19	mic).
20	>> (inaudible).
21	>>Dr. Kelly: Dynamic pressure
22	the atomic, velocity, density,
23	whether the pressure is per
24	square foot. It's on the space
25	shuttle the opportunity to

1	(indiscernible) and it's either
2	25 or 75 (indiscernible).
3	These are heavy systems and
4	might be higher.
5	>> General stability issue the
6	only issue to consider
7	(inaudible) that's why you need
8	the thrusters (inaudible).
9	>> (inaudible).
10	>>Dr. Kelly: (inaudible) over
11	here there was a system I used
12	not exactly AHB but trying to
13	identify what the markets were
14	and grading the markets in
15	terms of criteria. One of
16	those final slides was about
17	that. But one of the things
18	was every year you do that you
19	need to (inaudible).
20	The upper end of this is
21	350 tons, you can have three of
22	the (indiscernible) three
23	engines on the tail width, just
24	two, and you have the effect of
25	something similar to the

1	(indiscernible).
2	(Microphone muffled).
3	<pre>>>Dr. Kelly: (inaudible).</pre>
4	That would be long-term issues.
5	Running out of things to say.
6	(LAUGHTER).
7	>>Dr. Garrison: Any other
8	questions?
9	>> On the design how does that
10	compare to the (inaudible)
11	>>Dr. Kelly: Well, to address
12	that other than to the jet
13	engines on the SR71 multi
14	cycled, they had a limited
15	(indiscernible) capability and
16	then their design and other
17	features were designed top Mac
18	three. This vehicle is not
19	designed for cruising
20	opportunity. We hope
21	(indiscernible). And high
22	altitude so there won't be too
23	many disturbances. The engines
24	on the back, to address that.
25	There would be a tendency or

1	for the center of mass so it
2	won't flop all over the place.
3	But that's our side. Our new
4	side with the (indiscernible)
5	it's designed at a turtle jet
6	to act like a Ram jet three
7	times the speed of sound. The
8	temperature on the skin is
9	probably around 500 or
10	700-degrees far height maybe.
11	(inaudible). (Fahrenheit).
12	>> Any other questions? Let's
13	thank our speaker?
14	(APPLAUSE).
15	>>Dr. Garrison: We want to
16	invite everyone back next week.
17	(End of seminar).
18	(No audio.)
19	***DISCLAIMER***
20	THIS TRANSCRIPT IS A ROUGH
21	DRAFT FROM THE CART PROVIDER'S
22	OUTPUT FILE. THIS FILE MAY
23	CONTAIN ERRORS. THIS
24	TRANSCRIPT MAY NOT BE COPIED OR
25	DISSEMINATED TO ANYONE.

- ΤT

- -----

- . .