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The Beginning




Where the Heck did all that
come from?




First Observatories




New Technologies




Putting It all together




Not Everyone Understands
the Theory

*
- Q,
P 5
e w
! Y
M7
. ;‘\
e ‘;:f

Johannes Kepler




History of the Universe

Time Since Major Events
Big Bang Since Big Bang

We have some idea, but
don’t know for sure how the
universe is going to end yet.
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We know what’s
going on base on
our knowledge of
plasma physics
and elementary
particle physics

We still don’t
know how

physics works
in this era yet.



Inflation and Gravitational

Waves

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
400.000 vrs. Galaxies, Planets, etc.

Inflation

Quantul
Fluctuations

1st Stars
about 40 J million yrs.

Big Bang Expansion
13.7 billion years

Afterglow Light
Pattern
400,000 yrs.

Inflation

Quantum
Fluctuations




What are Gravitational Waves?

Gravitational Waves first
appeared as part of
Einstein’s General Theory
of Relativity
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Einstein’s Theory of General Relativity

eSpace-time tells matter how to move

eMatter tells space-time how to curve




What Do Gravitational Waves
Look Like?

 Plus Polarization

"""

 Cross Polarization



How GW Interferometers work
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LISA Space-based Gravitational
Wave Observatory

LISA




Low-Frequency Band: 0.1 to 0.0001 Hz

LISA
Laser Interferometer Space Antenna

L = 5 million kilometers
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Gravitational vs EM Radiation
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vity regions of spacetime (general relativity)

Gravitational waves have the potential to bring us

great surprises --- a “revolution” in our understanding

f gravity and the Universe

Because of
differences in EM
and Gravitational
Radiation, observing
GWs is very different
and so requires a
different kind of
astronomy



Why We Care about GWSs

« Gravitational Waves can excite (turbulent?)
modes of oscillation in the plasma field like a
crystal iIs excited by sound waves.

 What are the results of these excited modes?
What part did they play in the evolution of the
universe?

« Can these excited modes contribute to the
formation of structures in the early universe?



Magnetohydrodynamic
(Plasma) Turbulence

*Plasma (ionized gas): charged-particles or magneto-fluid

*Plasma Kinetic theory — particle description: Probability
Density Function (p.d.f.) f;(x,p,t), ] =€, ions.

*MagnetoHydroDynamics (MHD) — u(x,t), B(x,t) and p(x,t).

MHD turbulence — u, B and p are random variables (mean &
std. dev.).

«External magnetic fields & rotation affect plasma dynamics.



Homogeneous MHD Turbulence

@ Examine flow in a small 3-D cube (3-torus).
@ Assume periodicity and use Fourier series.

@ Homogeneous means same statistics at different
positions.

@ Approximation that focuses on physics of
turbulence.

@ Periodic cube Is a surrogate for a compact
magneto-fluid.




Fourier Analysis

Represent velocity and magnetic fields in terms of Fourier coefficients;

Zu(k t)exp(ik-x), k-U(k,t)=0

k-b(k,t)=0

1
(1) =37

Wave vector: k = (nx,ny,nz), wheren. e {...,-3,-2,-1,0,1,2,3, ... }
Wave length: A, = 2n/|k|. Numerically, we use only 0 < |k| < K.

In computational physics, this is called a ‘spectral method’.



Fourier-Transformed MHD Equations

Below, Q, and Q, are nonlinear terms involving products of the

velocity and magnetic field coefficients. In “k-space”, we have

dai(k)
dt

db(k)

dt

=Q (k) +20U(K)xQ+ik -B, b(k) - vk2T(K)

=Q, (k) +ik - B, Ti(k) —nk2b(K).

Direct numerical simulation (DNS) includes /N modes with k

such that O

< |K| £k, and so defines a dynamical system of

Independent Fourier modes.




Non-linear Terms

The Q, and Q, are convolution sums in k-space:

Qu(K) =(1-kk). 3" [a(p) < @(a)+ (p)xb(q)

p+g=Kk

Qu(k) =ikx > T(p)xb(q)

p+q=k
o(q)=igxT(g),  j(p)=ipxb(p)

Since V,-Q, (k) = V,-Q,(k) = 0, ideal MHD
flows satisfy a Liouville theorem.



Statistical Mechanics of MHD Turbulence

‘Atoms’ are components of Fourier modes ii(k), b(k).
Canonical ensembles can be used (T.D. Lee, 1952).
Gases have one invariant, the energy E.

Ideal MHD (v =n =0) has E, H and H,,.

H. and H,, are pseudoscalars under P or C or both.

Ideal MHD statistics exists, but not same as v, n — 0+,
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However, low-k ideal & real dynamics may be similar.



Ideal Invariants with 3, and B,

3-D MHD Turbulence, with Q, and B, has various ideal invariants:

Case | Mean Field Angular Velocity Invariants
I 0 0 E, He, Hy
1 B,#0 0 E, He
1 0 0, #0 E, H,,
vV B,#0 Q, =0B, E, Hp
V B,#0 Q #0(BxQ,#0) E

In Case V, the ‘parallel helicity’ is H, = H; —cH,, (c =Q,/B,).




Statistical Mechanics of Ideal MHD

E

LS Jaw) P +1Bk) P
k

Ideal invariants:  H, =13 {i(k)-b"(k)
2N
k

i = ~x
Hy :ﬁzklpk-b(k)xb (k)

Phase Space Probability Density Function:
D = Z-'exp(-aE —BHc —yHy) = Z7' exp(-Z, y'My)
a, B, v are ‘inverse temperatures’; y' = (U;,U,,b;,b,)

B, v, He , Hy, are pseudoscalars under P and C.



Eigenvariables

There 1s a unitary transformation in phase space such that

[uy(K), U, (K), By (K), by (K)] = [vi(K), V5 (K), V3(K), v, (K)]

H (k) = Hme p[ N3Z k(kj)|vj(k)|2]
J=1

The v;(k) are eigenvariables and the 4,0 are eigenvalues of the
unitary transformation matrix.



Phase Portraits

Although the

dimension of phase
space may be ~10°,

and the dynamics
of the system Is
represented by a
point moving on a
trajectory in this
space, we can
project the
trajectory onto 2-D
planes to see It:

Magnetic Fourier Component for k* = 2

Imaginary Part

-6 -} -2 0 2

Real Part




Coherent Structure, Case |11 (Rotating)
o.=1.01862, B =0.00000, vy=-1.017937
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Non-ergodicity indicated by large mean values: time-averages = ensemble averages.
Birkhoff-Khinchin Theorem: non-ergodicity = surface of constant energy disjoint.

Surface of constant energy is disjoint in ideal, homogeneous MHD turbulence.



Coherent

Structure

In Physical
Space

Case | Runs

0O =B, =0

Coherent magnetic
energy density in
the z = 15 plane of
a 323 simulation

(averaged from t=0
to t=1000)

Avg. b?RI t= 1000, min = -1.8446, max = -0.3098
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Hc =0.43449, HM =0.11580

Avg. b R3 t= 1000, min = -1.0660, max = -0.3842
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H.=0.26208, H  =0.12808

Avg. b’ R2t= 1000, min = -1.1040, max = -0.2959
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H, - 0.35800, H, ~0.14334

Avg. b’ R4 t= 1000, min = -3.8800, max = -1.6915
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HC =0.01642, HM =0.01081



The Goal of This Work

Apply the physics / mathematics of MHD
Turbulence to Gravitational Waves / Relativistic
Plasmas

Demonstrate the formation of coherent structures
(cosmic magnetic fields, density and temperature
variations and relic gravitational waves) as a
result of interactions with gravitational waves

Utilize a GRMHD code to model both the plasma
and the background space-time dynamically

Study the interaction between MHD turbulence
and gravitational waves and vice-versa



Our Approach

« Simulate the early universe after the
Inflationary event when the universe was
populated by only a Homogeneous Plasma
~leld and Gravitational Radiation generated

oy inflation

At this stage “classical” physics, General
Relativity and Magneto-hydrodynamics, can
describe the evolution of the universe

« We start with initial conditions at t = 3 min and
evolve these conditions numerically using the
GRMHD equations




GRMHD Variables -

Spacetime

« Spacetime metric:
ds® =g, dx“dx” =—adt* + y; (X, t)(dx' + £'dt)(dx’ + g dt)

e Extrinsic Curvature:
1 _
Kij :_z(é)t —L )y (X.0)

« BSSN Evolution Variables:

1
&P = E In[det(7ij )]

77ij = e_4¢7/ij
K ="K
1

e¢K—— K
( 37/)

’1} _>z

7/ijsj




GRMHD Variables - MHD

DOs = a\ﬁxpouo .conserved mass density
S, = a+/yT" : momentumdensity
r=a?/yT™ — p. :energy density

B’ =./yB' : magnetic field

1 i . -
Vv :ijuj_'g : 3—velocity

1 .
0 I

u =-—./1+»"u.u.
a\/ el

P=(I-1)p,&: pressure




Stress-Energy Tensor

1 871G
R* _ = g"R =
2g c*

T#" :Einstein's Eqgn
b2
T =(p,h+b?)u“u” + (P + ?)g‘” —b*b"”

h=1+¢&+ L . Enthalpy
o

L 1 B~

Jaz o0

1 . 1 B -
B> =—uB' : B ,=—(—+B’.U
(u) o i (u) uo(a (u) )




Building our Model

The observer Is co-moving with fluid therefore
a=1,p=0,u=(1,0,0,0)

Beginning of Classical Plasma Phase, t = 3
min

T = 10°K, Plasma is composed of electrons,
protons, neutrons, neutrinos and photons
Mass-Energy density is 10* kg/m?3

The universe is radiation-dominated

The Hubble parameter at this time is 7.6 X
101 km/s/Mpc



Other Parameters

Age of the Universe 13.7 Billion Years
Scale Factor: a(3.0 min) = 2.81 x 10
Specific Internal Energy, € calculated from T

Pressure, P: calculated using the Gamma
Law with T" = 4/3

The Electric Field is set to zero b/c the
observer is co-moving with the fluid

The Magnetic field is set to 102 G based on

theoretical estimates of the primordial seed
field




Initial Spacetime

* Perturbed Robertson-Walker Metric
ds® = a(t)’[-dt* + (5 + h;)dx" dx’]
« Spectrum of Perturbations

h(k,t) =87zl |1+ x [©2k* 4 ],
 Birefriengence

1 0N 1 0N
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Preliminary Results

Density Variation

Density Variation vs. Time
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Future Developments

Rewrite GR and GRMHD Eqguations In
k-space so we can use spectral
methods

Add Viscosity
Add Scalar Metric Perturbations
Add Scalar Fields if needed

Incorporate a Logarithmic
Computational Grid




Questions?




