

# Neutrinos at the Spallation Neutron Source



Feb 25, 2008

# Collaborating Institutions



University of Alabama, Argonne National Laboratory, California Institute of Technology, ado School of Mines, University of Houston, JINR-Dubna, Los Alamos National Laboratory, North Carolina Central University, Oak Ridge National Laboratory, University of South Carolina, University of Tennessee, Triangle Nuclear Laboratory, University of Wisconsin, Yale University

Feb 25, 2008

NC 💦



## **The Neutrino**

The electrons from beta decay were observed to have a continuous spectrum

Pauli in 1930 proposed that to conserve Energy and Momentum another particle, with little or no interaction was required – The neutrino

 $n \rightarrow p + e + v_e$ 

"I am embarrassed that I have proposed a particle that can never be seen"



- Neutrinos have VERY small masses
- Only left handed neutrinos interact -- very weakly
  - 3-generations of neutrinos – Lepton number is conserved

Feb 25, 2008

# What about the Neutrino?

• Neutrinos – Dirac, Majorana?

SNS .

- What are the neutrino masses ?
- What is the neutrino mass hierarchy ?
- Is CP violated in the neutrino sector ?
- Are there additional neutrino types, e.g. sterile and non-SM neutrinos?
- What are the mixing angles (in particular  $\theta_{13}$ )?
- How do neutrinos affect the evolution of our universe?



# How do neutrinos affect the evolution of our universe?

In Contradiction to Newton's Concept of the "Fixed Stars" our Universe has, and now is, EVOLVING

Neutrinos and the weak interaction are believed to be crucial in the Core-collapse Type II Supernovae – How does this happen?

NC 🔨



#### SUPERNOVA

- Dominant contributor to Galactic nucleosynthesis
- Occurs in the collapse of the iron core of a massive star - 8-10 Solar mass
- Extremely energetic explosion
  - 10<sup>53</sup> ergs of energy released
  - 99% in neutrino emission
  - A few per century in our Galaxy (last SN 400 yrs ago)





## **Convective Model and Neutrino Heating**



**University of Houston** 





Feb 25, 2008



# Neutrino reactions and nucleosynthesis

v-nucleus cross sections are important for understanding the supernova explosion mechanism and for nucleosynthesis •Neutrino reactions with nuclei ahead of the shock alter the entropy & composition of the infall [Bruenn & Haxton (1991)].

•Neutrino reactions alter the elemental distribution in the ejected material - Cross sections are important for interpreting observations in metal-poor stars [Fröhlich et al., astro-ph/0410208 (2005)].

•Neutrino energy transport reheats the shock. The model has a hot dense core of neutrons surrounded by a shell of alpha and neutrons surrounded by a shell of Fe and Ni, surrounded by consecutive shells of lighter elements. Explosion ejects outer shells.[Ann Rev 27(77)167]

> E. V. Hungerford University of Houston

Feb 25, 2008



# Electron capture and Core collapse

Electron capture and the charged-current υ<sub>e</sub> reaction are governed by the same nuclear matrix element. Electron capture changes protons into neutrons

 $e^{-} + A(Z,N) \leftrightarrow A(Z-1,N+1) + v_{e}$ 

- To Calculate rates we need
  - Gamow-Teller strength distributions
  - First-forbidden contribution
  - g<sub>A</sub>/g<sub>V</sub> modifications by nuclear medium, etc
- New calculations using a hybrid model of
   Shell Model Monte Carlo (SMMC) and
   RPA predict significantly higher rates for
   N>40 and supernovae shock starts deeper
   and weaker

The weak interaction plays a crucial role in establishing the dynamics of the supernova shock wave

Iron core mass and neutronization depend on e<sup>-</sup> capture and beta decay rates for A<65

Electron capture producing  $\mathbf{U}_{e}$ on heavy nuclei remains important throughout collapse.

Neutrino Transports energy from the core to the outer shell

## **Supernovae and Nucleosynthesis**



NS SNS

#### Input

• masses

- weak decay properties
- neutrino interactions
- thermal properties

A convolution of nuclear structure, nuclear astrophysics, weak interactions

Feb 25, 2008



## A Simulation of Neutrino Nucleosynthesis

B. S. Mayer www.astro.princeton.edu/~ burrows



E. V. Hungerford University of Houston

Feb 25, 2008





SNS 👡





SNS 🔬



## Neutrino-nuclear cross-sections

- Both cross sections are needed for supernova modeling a few % accuracy is required
- Radiative corrections and in-mediun effects (rescaling  $g_a/g_v$ , correlations, etc ) are required for CC
- Only the CC cross section in C is reasonably well-measured (10%).
- Coherent NC-nuclear has not been observed
- Needed for the calibration of astrophysical neutrino detectors (Low Energy)







**Neutral current:** 

 $l, v_l$ 

$$\binom{\nu}{\overline{\nu}} + (Z, A) \rightarrow \binom{Z+1, A}{Z-1, A} + \binom{l^{-}}{l^{+}}$$
$$\nu + (Z, A) \rightarrow (Z, A^{*}) + \nu$$

All reactions are possible as long as they obey selection rules







Feb 25, 2008



## **Neutrino-Fe CC Cross section**



Feb 25, 2008



#### Feb 25, 2008

#### E. V. Hungerford University of Houston

20

### Neutral Current Reactions Coherent Scattering from Nuclei



🔨 SNS



# The Oak Ridge Spallation Neutron Source

Linac Tunnel

Central Helium Liquefaction Building

Radio-Frequency Facility

> Support Buildings

Target

Ring

Future Target Building

Central Laboratory

**Front-End Building** 

**Klystron Building** 

Center for Nanophase Materials Sciences

Joint Institute for Neutron Sciences

01-04517/arm

Feb 25, 2008



# **SNS Parameters**

- •Primary proton beam energy 1.3 GeV
- •Intensity 9.6  $\cdot$  10<sup>15</sup> protons/sec
- •Number of protons on the target 0.687x10<sup>16</sup> s<sup>-1</sup> (1.1 ma)
- Pulse duration 380ns(FWHM)
- •Repetition rate 60Hz
- •Total power 1.4 MW
- •Liquid Mercury target

0.13 neutrinos of each flavor produced by one proton (9 x 10<sup>14</sup> s<sup>-1</sup>)
Number of neutrinos produced ~ 1.9.10<sup>22</sup>/year
There is a larger flux of ~MeV anti-neutrinos from radioactive decay from the target



# **Stopped pion decay**

Produces us with the same energy range as supernovae



LSND at Los Alamos <sup>12</sup>C [Auerbach et al. (2001)] v+Iodine (40%) [Distel et al. (2003)] KARMEN at ISIS (RAL) 65 tons of liquid Scintillator 100 events/year  $\upsilon + C$ ,  $\sigma = (8\pm1) \times 10^{-42} \text{ cm}^2$  $\upsilon + \text{Fe} (\sim 40\%)$ 

Feb 25, 2008





Feb 25, 2008



# Comparison of SNS with other stopped pion facilities

| Facility                                       | LANSCE            | ISIS                                                                           | SNS                                    | SNS<br>Advantage                                                                                                                 |
|------------------------------------------------|-------------------|--------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Beam energy                                    | <b>0.8 GeV</b>    | 0.8 GeV                                                                        | <b>1.3 GeV</b>                         | 1.7                                                                                                                              |
| Beam current                                   | 1.0 mA<br>(0.8MW) | 0.2 mA<br>(0.16MW)                                                             | 1.1 mA<br>(1.4 MW)                     | 1.75                                                                                                                             |
| Coulomb delivered<br>per year to the<br>target | 6500<br>(LSND)    | 2370<br>(KARMEN)                                                               | 22000                                  | 3                                                                                                                                |
| Beam structure                                 | Continuous        | Two 200 nsec<br>bunches separated<br>by 300 nsec<br>repetition rate - 50<br>Hz | 380 nsec<br>FWHM<br>pulses at 60<br>Hz | $\begin{array}{c} \text{Separation} \\ \nu_{\mu} \text{ from } \nu_{e}, \\ \text{ better BG} \\ \text{ suppression} \end{array}$ |
| Target                                         | Various           | Water cooled<br>Tantalum                                                       | Mercury                                | Source<br>compactness                                                                                                            |



# υ-SNS Coverage of the (N,Z) Plane





Neutrino Proposals at the SNS Require 2 Detector types

Charged Current Neutrino-Nucleus Reactions ບ-SNS

Coherent Neutrino-Nucleus Scattering (CLEAR – Coherent Low Energy Atomic Recoil)

#### As an example;

 $V_e + {}^{56}Fe \rightarrow e + {}^{56}Co$ 

Uncertainty in this cross section is due to distribution of the nuclear strength and renormalization of the axial-vector coupling (GT limit when  $q \rightarrow 0$ )

υ + C, σ = (8±1) x 10-42 cm2 υ+Fe (~40%) Cross section about 10 times higher and all flavors participate. In principle cross section can be calculated in SM

No previous observation Important for energy transport in S

ungerford University of Houston

# **Charged Current Reactions**



SNS 👡



Feb 25, 2008



SNS 👡

## Number of straw cells hit for a Segmented

### **Fe Target**





Feb 25, 2008



## An Example of Tracking a Problem

#### $\upsilon$ + <sup>56</sup>Fe $\rightarrow$ e + <sup>56</sup>Co\*



Feb 25, 2008



## A Schematic Data Acquisition System



Feb 25, 2008



# **Expected Total Cross Sections**

#### Reaction

#### **Integrated Cross Section**



0.297.10<sup>-43</sup> cm<sup>2</sup> 0.050.10<sup>-43</sup> cm<sup>2</sup> 0.92.10<sup>-41</sup> cm<sup>2</sup> 0.45.10<sup>-41</sup> cm<sup>2</sup> 0.27.10<sup>-41</sup> cm<sup>2</sup> ~2.5.10<sup>-40</sup> cm<sup>2</sup>

#### SNS will deliver ~ 1.9·10<sup>22</sup> neutrinos per year

Feb 25, 2008


### Properties of Liquid Noble Gases

| Element       | Density<br>(g/cc) | Boiling<br>Pt<br>(K) | Mobility<br>(cm2/Vs) | Scint.<br>(nm) | Photon<br>#/MeV | Isotopes | Lifetime<br>Triplet<br>(us) |
|---------------|-------------------|----------------------|----------------------|----------------|-----------------|----------|-----------------------------|
| LHe<br>2/4    | 0.145             | 4.2                  | (low)                | 80             | 19k             | 2        | 13 x10 <sup>6</sup>         |
| LNe<br>10/20  | 1.2               | 27.1                 | (low)                | 78             | 30k             | 3        | 15                          |
| LAr<br>18/40  | 1.4               | 87.3                 | 400                  | 125            | 40k             | 3        | 1.6                         |
| LKr<br>36/84  | 2.4               | 120                  | 1200                 | 150            | 25k             | 6        | 0.09                        |
| LXe<br>54/132 | 3.0               | 165                  | 2200                 | 175            | 42k             | 9        | 0.03                        |

### 2-Phase LXe Detector





Takes Advantage of high e mobility to produce 2 signals S1 and S2

- (S1) 16 keV nuclear recoil:  $\approx$  200 photons (quenched)
- (S2) ionization signal  $\approx$  7-20 electrons (proportional) (assumes high field 8 kV/cm)

Also provides 2-D (3-D with timing) position information





38

Feb 25, 2008

# NNS 🔨

### **Response of LNe to Nuclear** and Gamma Ionization

Scintillation Time Dependence in LNe



39



### Quenching of Ionization from Nuclear Recoil





### Recoil - Electron/gamma Discrimination







### The LXe Detector Flask



Feb 25, 2008





### Water Tank Shield



### Xe Recoil for Coherent Scattering by SNS Neutrinos



Feb 25, 2008

SNS 🗸

E. V. Hungerford University of Houston

### Recoil Energy for Various Incident Neutrino Energies



Feb 25, 2008

sNS 🗸

University of Houston



### **Signal vs Background**



### **Neutron Background**



### Feb 25, 2008





# Timing

 Time structure crucial t > 1 μs cuts most neutron background  $\cdot \delta t > 1 \mu s \rightarrow lose \nu_{\mu} but$ retains most ve

| Time cut (μs) | v efficiency (%) |
|---------------|------------------|
| 2-10.0        | 43               |
| 1.5-10.0      | 37               |
| 1.8-10.0      | 34               |
| 2.0-10.0      | 30               |



Feb 25, 2008

**University of Houston** 

50



- Hermetic veto efficiency of 99% -> 30 fast neutrons/day
- Expected number of untagged neutron events is a few per day
- Extra discrimination is expected from detector PID



## Cosmic Veto

### • CC Detection

4 layers of plastic scintillator Cosmic muons not an issue Neutrons are difficult 10<sup>6</sup> suppression required

Neutral Current Detection

Water Cerenkov in the water tank

Not studied in detail but appears not to present a problem









neutrinos, neutrons, muons





E. V. Hungerford University of Houston

Feb 25, 2008

| <del>s</del> NS <del>s</del> | Estim                                                            | ated 1<br>CC Rea           | ted 1 year Yield<br>C Reaction |                       |                            |
|------------------------------|------------------------------------------------------------------|----------------------------|--------------------------------|-----------------------|----------------------------|
| Target                       | Assumed<br>Cross Section<br>(10 <sup>-40</sup> cm <sup>2</sup> ) | # Target<br>Nuclei         | Raw<br>Counts                  | Assumed<br>Efficiency | Statistical<br>Significanc |
| Segmented I                  | Detector (10 ton fid                                             | ucial mass)                | 2 200                          | 250/                  | 2.00/                      |
| Lead                         | 41.0 [20]                                                        | 2.9×10 <sup>28</sup>       | 3,200<br>14,000                | 35%                   | <1.4%                      |
| Aluminum                     | 1.12 [21]                                                        | 2.2×10 <sup>29</sup>       | 3,100                          | 35%                   | 3.0%                       |
| Homogeneor                   | <u>ıs Detector (15.5 m</u>                                       | 1 <sup>3</sup> fiducial vo | <u>)lume)</u>                  |                       |                            |
| <u>III of the generate</u>   |                                                                  |                            |                                | 40.07                 | E 00/                      |
| Carbon                       | 0.144 [17]                                                       | 5.6×10 <sup>29</sup>       | 1,000                          | 40%                   | 5.0%                       |

Feb 25, 2008

0



Estimated 1 year Yield NC Coherent

NC Coherent events/Yr from LXe --- 200

Measurement of Neutrino Magnetic Moment --- 10<sup>-10</sup> nm

Given the SM extraction of the neutron form factor will not be sufficiently precise to model sensitive

**Provides a factor of 10 improvement in the discrimination of Non-standard Interactions** 

Provides a measure of  $Q_w^2$  at Q = 0.04 GeV/c in a different channel ( $\delta \sin^2(\theta_W) \approx 5\%$ )

Feb 25, 2008



# **Concluding Remarks**

- **nN** reactions are important for supernovae
  - **Influence core collapse** •
  - Affect shock dynamics
  - Modify the distribution of A>56 elements
  - Affects r process nucleosynthesis
  - May be the dominant source of B, F, <sup>138</sup>La, <sup>180</sup>
- - ng constants
- conity to measure nN cross sections apernovae and nuclear structure
- ements on 2 targets to < 10% accuracy in 1
- on CL we a see in the second s ag collaboration of experimentalists and theorists but
- First measurement of a Coherent NC cross section





### The END





### **Additional Slides**

Feb 25, 2008



## **SNS induced neutron flux**



•High energy neutrons can be eliminated using time cut

•Low energy neutrons need shielding and neutron absorbers

•PID in detectors is also available

Feb 25, 2008



N hits, + veto + de/dx + compactness + fidu +time

Feb 25, 2008











61



### **Cross Sections**



 $0.297 \cdot 10^{-43} \text{ cm}^2$  $0.050 \cdot 10^{-43} \text{ cm}^2$  $0.92 \cdot 10^{-41} \text{ cm}^2$  $0.45 \cdot 10^{-41} \text{ cm}^2$  $0.27 \cdot 10^{-41} \text{ cm}^2$ ~2.5·10<sup>-40</sup> cm<sup>2</sup>

### SNS will deliver ~ 1.9·10<sup>22</sup> neutrinos per year

Feb 25, 2008



### **Homogeneous detector**

- 3.5m x 3.5m x 3.5m steel tank (43 m<sup>3</sup>)
- 600 PMT's (8" Hamamatsu R5912)
  - → Fiducial volume 15.5 m<sup>3</sup> w/ 41% coverage
- 1260 events/yr  $\upsilon_e^{+12}C \rightarrow^{12}N + e^{-12}$ (mineral oil)
- ~450 events/yr  $\upsilon_e^{+16}O \rightarrow {}^{16}F^{+}e^{-}$  (water)
- Geant4 simulations
   dE/E ~ 6%; dx ~ 15-20 cm;
   dθ ~ 5° 7°
- Current R&D
   PMT arrangement
   Neutron discrimination
   Compact photosensors



Feb 25, 2008





### **PM Performance**







### **SNS Neutrons**

Most dangerous B.G. is from SNS neutrons
Analysis is complicated because of many uncertainties
We know that neutron flux in the hall is small





# Block Diagram of Readout Electronics



~30,000 Straw Anodes
Charge Division
Multiplexed
Amplitude and Time

### Feb 25, 2008

Let me now show some calculated  $\sigma$  for several cases of practical interest (ICARUS). These could be, therefore, used as <u>both</u> tests of calculations and basis for detector design etc.





# υ-SNS facility overview

- Total volume = 130 m<sup>3</sup> 4.5m x 4.5m x 6.5m (high)
- heavily shielded facility (fast neutrons)
  - 60 m<sup>3</sup> steel ~ 470 tons
  - 1 m thick on top
  - 0.5 m thick on sides
- Active veto detector for cosmic rays
- ~70 m<sup>3</sup> Active
- Configured to allow 2 simultaneously operating detectors

**BL18** ARCS υ-SNS

Feb 25, 2008



- Monte Carlo Inputs (stated here for the record, won't discuss in detail)
  - Assume threshold for full discrimination 16 keVr
  - Liquid Xe (3 regions)
    - LXe Fiducial (after any x-y-z position cuts) majority of inner Xe / LXe Inner (surrounded by Teflon wall - low Kr content) / LXe Veto (Xe outer layer, 5 cm simulated)
  - Nuclear/Electron Recoil Quenching Factor Primary Light (QF<sub>primary</sub>)
    - Zero Field (Conservative) QF<sub>p</sub> = 20%
    - High Field (5 keV/cm)  $QF_p = 50\%$ 
      - Electron recoil primary light yield reduced to 38-36%@ 1-5 kV/cm, (vs zero field) due to ionization component no longer recombining

71

- Nuclear recoil primary light yield ~90%@5 kV/cm (vs zero field)
- **Background Discrimination** 
  - Electron Recoil assumed (1 in 200) above threshold of 8 keVee/16 **keVr**
  - Monte Carlo results focus en rates for region 8-16 keVee (16-32 keVr)
- Feb 25, 2008 External 5 cm LXe veto (Assumed 50 ke)/ee threshold)



# CC Cross Section for <sup>208</sup>Pb



Feb 25, 2008


### **Examples of Modern Neutrino Experiments**

# Three Underground Experiments



SNC 💦



Results from Super-K I and II, two flavour and three flavour analyses

> Search for  $v_{\tau}$  appearance

Search for sterile neutrinos

Test of Mass Varying neutrino models

### MINOS

>Charge separated (  $\nu_{\mu}$  and  $\overline{\nu}_{\mu}$ ) results from contained vertex events (poster) and neutrino induced incoming  $\mu$  events



Neutrino induced incoming μ events

















Feb 25, 2008

E. V. Hungerford University of Houston



Experiment and Theory for CC Total Cross section agree for <sup>12</sup>C

#### Exp.results (in 10<sup>-42</sup>cm<sup>2</sup>):

```
9.4 \pm 0.4 \pm 0.8 (KARMEN U_e, 98, DAR)
```

```
8.9 \pm 0.3 \pm 0.9 (LSND U<sub>e</sub>, 01, DAR)
```

```
56. \pm 8 \pm 10 (LSND U_{\mu}, 02, DIF)
10.8 \pm 0.9 \pm 0.8 (KARMEN, NC, DAR )
```

#### **Calculations:**

```
9.3 , 63, 10.5 (CRPA 96)
8.8 , 60.4, 9.8 (shell model, 78)
9.2 , 62.9, 9.9 (EPT , 88)
```



## **CC cross section on Pb**

- Lead based detectors are one of the υ-SNS Targets
- No experimental data \_\_\_\_\_ detector design relies on calculated cross sections.
- Shell model treatment is not possible so various forms of RPA and other approximations are used

|                          |             |             |              | 1000 E.C. K           |
|--------------------------|-------------|-------------|--------------|-----------------------|
| For DAR: K               | olbe & Lang | janke, [01] | 36 (10 -40 ) | $cm^2$ )              |
| Suzuki & Sagawa, [03] 32 |             |             |              | 1200                  |
| For FD:                  |             |             |              |                       |
| T=6 MeV                  | 8 MeV       | 10 MeV      | ,            | 1.15                  |
| 14                       | 25          | 35          | Volpe [02]   |                       |
| 11                       | 25          | 45          | Kolbe [01]   |                       |
|                          |             |             |              | The Day of the second |

E. V. Hungerford University of Houston