The Story of Giant Magnetoresistance (GMR)

From Laboratory to Hard Drive

Anne Reilly

Grants Development UHCL Adjunct Professor of Physics

The Nobel Prize in Physics 2007

The Nobel Prize in Physics is awarded to ALBERT FERT and PETER GRÜNBERG for their discovery of Giant Magnetoresistance. Applications of this phenomenon have revolutionized techniques for retrieving data from hard disks. The discovery also plays a major role in various magnetic sensors as well as for the development of a new generation of electronics. The use of Giant Magnetoresistance can be regarded as one of the first major applications of nanotechnology.

Fert

Grunberg

Outline

Magnetic Materials: Basic Properties Source of Magnetism Types of Magnetism Domains and Hysteresis Spin-Dependent Transport

2. The Discovery of Giant Magnetoresistance

- a. Atomically Engineered Structures
- b. Fe/Cr Multilayers and Antiferromagnetic Coupling
- c. Giant Magnetoresistance
- d. Advances to Applications

3. GMR and the Computer Hard Drive

www.lanl.gov

Atomic Magnetism arises from electron angular momentum and spin

Ν

S

Atomic Magnetism arises from electron angular momentum and spin

What happens in a <u>solid</u>? Individual atomic moments in solids are <u>usually</u> not aligned.

What happens in a <u>solid</u>? Individual atomic moments in solids are <u>usually</u> not aligned.

 $\frac{\text{Diamagnetism}}{\text{Induced moment is opposite of external field, B}}$ $(M_{\text{dia}} \text{ is very small, except in superconductors})$

<u>Paramagnetism</u> Induced moment is in same direction as field

Ferromagnetism (3d and rare earth elements)

Occurs in materials we usually call 'magnetic". Interaction between electrons (exchange) causes moments to align *spontaneously*.

1	IA 1 H	Periodic Table														VIIA	0 2 He	
2	3 Li	4 Be		of	f tl	he	Е	5 B	6 C	7 N	8 0	9 F	10 Ne					
3	11 Na	12 Mg	ШB	IVB	٧B	VIB	VIIB		— VII -		IB	IIB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 N 1	²⁰ Fe	27 Co	28 Ni) u	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 ND	42 Mo	43 Tc	44 Ru	Rh	40 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 NS	108 HS	109 Mt	110 110	111 111	112 112	113 113					

Lanthanide Series	58 Ce	59 Pr	Nd	Pm	⁶² Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	Er	Tm	Y	71 Lu
Actinide Series	90 Th	91 Pa	92 U	93 Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	102 No	103 Lr

Exchange Interaction

Central for understanding magnetic interactions in solids
A quantum mechanical effect, arises from Coulomb electrostatic interaction and the Pauli exclusion principle

Coulomb repulsion energy high Coulomb repulsion energy lowered

$$U_C = \frac{e^2}{4\pi\varepsilon_0 r^2} \sim 10^{-18} J$$

 (10^5 K !)

Natural Principle: Minimization of Energy

Exchange Interaction: A Quantum Mechanical Effect

$$E = \frac{\left\langle \Psi \middle| \mathcal{H} \middle| \Psi \right\rangle}{\left\langle \Psi \middle| \Psi \right\rangle}$$

$$\mathcal{H}_{ex} = -2J\overline{S}_i \cdot \overline{S}_j$$

J>0

J<0

<u>Domains</u>

In ferromagnetic materials, exchange interaction leads to an alignment of atomic spins.

However, this leads to a large external and dipolar magnetic fields which will tend to demagnetize the material. Domains are formed to minimize this effect.

Domain wall

From http://www.aacg.bham.ac.uk/magnetic_materials

<u>Hysteresis = Magnetic Memory</u>

Ni thin film

Spin-Dependent Transport and Ordinary (Anisotropic) Magnetoresistance (AMR)

Discovered by Lord Kelvin in 1856.

www.emg.tu-bs.de

Spin Dependent Scattering

Resistance (R) and Resistivity (ρ) determined by scattering of electrons. In ferromagnets, because of the exchange interaction, one spin state is favored. This means that there are less energy states available for one spin than the other, and:

$\rho > \rho$ in ferromagnetic element metals

Spin Dependent Scattering

Resistance (R) and Resistivity (ρ) determined by scattering of electrons. In ferromagnets, because of the exchange interaction, one spin state is favored. This means that there are less energy states available for one spin than the other, and:

www.nobelprize.org

The 1980's necessary technological advance: Nanotechnology "Atomically engineered structures"

http://www.mats-uk.com/applications/magnetic.html

Molecular Beam Epitaxy (MBE)

Physics.umn.edu

Peter Grunberg et al., Discovery of AF coupling in Fe/Cr multilayers

"Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers", Physical Review Letters, 57, 2442–2445 (1986)

www.cnrs.fr

Giant Magnetoresistance (GMR) (Orsay, 1988, Fe/Cr multilayers, Jülich, 1989, Fe/Cr/Fe trilayers)

Phys. Rev. Lett. 61, 2472 (1988); Physical Review B 39, 4282 (1989)

Stuart Parkin and IBM: Understanding and Maximizing Effect for Application

nytimes.com

Major Step: Invention of Spin Valve

Dieny, Parkin (IBM)

rug.nl

Major Step: Current Perpendicular to the Plane (CPP) GMR

Giant Magnetoresistance of Current-Perpendicular Exchange-Biased Spin-Valves of Co/Cu.

A. C. Reilly, W.-C. Chiang, W. Park, S. Y. Hsu*, R. Loloee, S. Steenwyk**, W. P. Pratt, Jr., J. Bass,

Department of Physics and Astronomy, Center for Fundamental Materials Research, and NSF MRSEC Center for Sensor Materials, Michigan State University, East Lansing, MI 48824-1116. *Present Address: Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan **Permanent Address: Physics Department, Calvin College, Grand Rapids, MI 49546

Source of GMR: Spin Dependent Scattering

$\rho > \rho$ in ferromagnetic element metals

Parallel (P)

Applications: Computer Hard Drive Read Sensors

How your hard drive stores data

U 01010101 H 01001000 C 01000011 L 01001100

Binary code

With more sensitive sensors,

bits can get smaller = higher storage density

How your hard drive stores data

www.dmphotonics.com

High resolution MFM image of Seagate Barracuda 750Gb Hard Drive, ST3750640AS

Evolution of the Hard Drive

Evolution of the Hard Drive

IBM 305 RAMAC, 1956

4.4 MB = 50 24-inch diameter disks. Leased \$3200 month

Evolution of the Hard Drive

2004: GB on the size of a quarter!

Links to See:

http://www.research.ibm.com/research/gmr.html

http://nobelprize.org/mediaplayer/index.php?id=797

The End... Questions?

