Research at UHCL

- Current Application Focus

- MHD Augmented Propulsion (UHCL)
- RF Magnetized Plasma Sources, Atmospheric Plasma Torches (Propulsion, Re-entry plasma) (UHCL/JSC)
- Plasma Actuator/Airfoil for Hypersonic Flight (UHCL)
- FRC-based Electric Propulsion (Fusion/Propulsion)
- Lightning Stroke Simulation (JSC)
- Magnetic Reconnection (UHCL)

- Some applications require neutrals:
 - Development 0-D Plasma-Neutral model

Simulation Studies

- 1. Fluid (MHD) Plasma Simulation
- 2. Particle Simulation
- 3. Computer Science: Massively Parallel Processing

MHD Plasma Simulation

1. Pre-Maxwell Equations:

$$\mathbf{j}_p \Rightarrow \mathbf{E} , \mathbf{B}_p$$

2. Continuity Equation:

$$n, \mathbf{u} \Rightarrow \frac{\partial n}{\partial t}$$

3. Momentum Equation

 $\mathbf{j}, \mathbf{B}, \nabla p, \nu, \rho, \mathbf{u}, \nabla \mathbf{u} \Rightarrow \frac{\partial \mathbf{u}}{\partial t}$

4. Energy Equation

 $n, \nabla T, p, \mathbf{u}, \mathbf{q}, Q \Rightarrow \frac{\partial T}{\partial t}$

5. Ohm's Law (resistive MHD)

 $\mathbf{u}, \mathbf{B}, \eta, \mathbf{j}_{\mathbf{p}} \Longrightarrow \mathbf{E}$

MHD Plasma Simulation

1. Pre-Maxwell Equations:

$$\frac{\partial \mathbf{B}_p}{\partial t} = -\nabla \times \mathbf{E} , \qquad \nabla \times \mathbf{B}_p = \mu_0 \mathbf{j}_p$$

2. Continuity Equation:

$$\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) = 0$$

3. Momentum Equation: $\rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = \mathbf{j} \times \mathbf{B} - \nabla p - \nabla \cdot (\nu \rho \nabla \mathbf{u})$

4. Energy Equation:

$$\frac{n}{\gamma - 1} \left(\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right) = p \nabla \cdot \mathbf{u} - \nabla \cdot \mathbf{q} + Q$$

5. Ohm's Law (resistive MHD): $\mathbf{E} = -\mathbf{u} \times \mathbf{B} + \eta \mathbf{j}_{\mathbf{p}}, \mathbf{B} = \mathbf{B}_0 + \mathbf{B}_p$

MHD Plasma Simulation

Physical Model:

Legenda

 $v = m_{\rm e}/m_{\rm i}$ is the mass ratio μ_0 and ε_0 are the permeability and permittivity of free space *n* is the number density ρ is the mass density v is the center of mass velocity **B** is the magnetic flux density **E** is the electric field J is the current density p is the scalar pressure Q is the heat flux η is the electrical resistivity $P'=pI+\Pi$, I is the unit tensor Π is the symmetric, traceless part of the stress tensor

Magnetic Reconnection Leading to Detachment

Reconnection Studies: Magnetic Nozzle Perturbation

NIMROD MHD Simulation: Step $450000 = 425 \ \mu s$

FRC-based Plasma Thruster

• The plasma **detachment** in the nozzle is induced in a controlled way, through the formation of a sequence of FRC **plasmoids**.

Simulation Hardware

• "Columbia" at NASA-Ames: 20 SGI® Altix[™] 3700 superclusters, each with 512 Itaniunm processors = 10240 processors

• In-house Linux Clusters

Building the UHCL Plasma Lab

Building the UHCL Plasma Lab

Mass Flow Controller

Formation and Confinement Coils

High-Voltage Power Supply and Capacitor Bank

Plasma Toroid Experiment

High-Vacuum Pump

Coil Power Supply

Fusion and Plasma Propulsion

The **Field Reversed Configuration** (FRC) is a well studied plasma confinement scheme that is very appealing also for propulsion applications

A conceptual scheme for a FRC Rocket

Fusion and Plasma Propulsion

Plasma and power production scheme for a FRC fusion (still to be demonstrated...) **direct** propulsion rocket

FRC Plasmoid Fusion-Propulsion Concept

A sequence of FRC plasmoids is formed from an accelerated plasma column

