Fluorescence of Single-Walled Carbon Nanotubes: from Fundamental Studies to Applications

R. Bruce Weisman Rice University Houston, Texas

University of Houston Clear Lake March 28, 2013

Forms of Carbon

Carbon Nanostructures

Single walled Carbon Nanotube (Buckminsterfulle (Serve) NT)

STM Image of a Single-Walled Carbon Nanotube

Prof. C. Lieber, Harvard Univ.

Relevant SWCNT Properties

- Typical diameter: 0.6 3 nm
- Typical lengths: $100 10,000 \text{ nm} \rightarrow \text{large aspect ratios}$
- Density: $\sim 1.4 \text{ g}/\text{cm}^3$
- Tensile strength: ~ 60 GPa \rightarrow 50 x higher than steel
- Persistence length: ~ 50 mm \rightarrow very rigid
- Surface area: $> 1000 \text{ m}^2 / \text{g}$ (every atom on surface)
- Electrical transport: metallic or semiconducting
- Optical spectra: intense π - π * bands, direct band-gap semiconductors

Potential Uses of Carbon Nanotubes

Super-strong fibers

Lightweight electrical cable

High performance composite materials

Novel electronics (transistors, conductive films)

Physical / chemical / biochemical sensors

Medical diagnosis and therapy agents

Rolling up graphene to make a SWCNT

from http://www.photon.t.u-tokyo.ac.jp/~maruyama/wrapping.files/frame.html

Many SWCNT structures exist (different diameters and angles)

intermediate ($0 < \alpha < 30^{\circ}$)

zigzag

Constructing Nanotubes from a Graphene Sheet

(7,5) Single-walled Nanotube

Forming bands from the p-orbitals

Electronic states of a semiconducting SWCNT

Nanotubes are produced as Complex Mixtures

- Even single-walled samples contain:
- many diameters
- many chiral angles
- many lengths (no effect on electronic structure)
- bundles of tubes bound by van der Waals forces
- impurities (residual catalyst, giant fullerenes,...)

Electronic states of a semiconducting SWCNT

Contour plot of emission intensity

Patterns in the spectral data? or just patterns in the noise?

Structure-assigned spectral transitions

NS2 NanoSpectralyzer

Model NS2 NanoSpectralyzer®

Diameter distribution of NIST-VAMAS sample (from fluorimetric analysis, corrected)

Chemical Application

Structural Sorting of SWCNTs

Ghosh, Bachilo, and Weisman, *Nature Nanotechnology 5*, 443 (2010)

Ultracentrifugation processing of SWCNTs

Refined DGU (HiPco)

RICE

Arnold et al., Nature Nanotech. 1, 60 (2006)

Separated fractions contain robust near-IR fluorophores with distinct emission peaks

Ghosh, Bachilo, and Weisman, *Nature Nanotechnology 5*, 443 (2010)

Through the Looking Glass

Separation of SWCNT enantiomers (left- and right-handed forms)

Emission spectra of individual SWCNTs

Fluorescence image of a free SWCNT in water suspension

 $\label{eq:Realtime} \begin{array}{l} \text{Real time} \\ \text{Nanotube length} = 10 \ \mu\text{m} \end{array}$

Chemical Application

Observing Single-Molecule Chemical Reactions with Nanotubes

with L. Cognet, D. Tsyboulski, J.-D. Rocha, C. Doyle, J. Tour Science 316, 1465 (2007)

Stable fluorescence from single nanotubes

Single nanotube fluorescence at pH 7

Quenching measurements on single nanotubes

Stepwise fluorescence quenching by irreversible diazonium reaction

Engineering Application

Using Nanotubes for Non-Contact Strain Measurement

P. Withey et al., Nano Letters 12, 3497 (2012).

Axial strain alters the nanotube's band gap and causes spectral shifts

Fluorescence shifts in a single SWCNT

Basic scheme for non-contact optical strain measurement

Strain-induced fluorescence shifts apparent from SWCNT/polyurethane coating (3-layer spin coat)

Spectral strain measurement using SWCNT / polyurethane coating

Rotate laser polarization to find the axis of strain

Field measurement scheme for non-contact strain measurements

Fluorescence Studies of SWCNTs in Fruit Flies

(Drosophila melanogaster)

Fluorescence of SWCNTs inside gut of a living Drosophila larva

SWCNTs in the dorsal vessel of dissected Drosophila (fruit fly) larva after oral exposure

SWCNTs in the dorsal vessel

Dissected brain tissue of Drosophila larva fed with SWCNT-yeast paste

Co-Workers

Sergei Bachilo Dmitri Tsyboulski Paul Cherukuri John-David Rocha Tonya Leeuw Cherukuri John Casey Anton Naumov Saunab Ghosh Jason Streit Paul Withey Satish Nagarajaiah Vishnu Vemuru

Anni Siitonen (Univ. of Jyväskylä) Laurent Cognet (Univ. of Bordeaux)

Kate Beckingham & co-workers (Rice Univ. Biochem. & Cell Biology)

Support

NSF Chemistry Division

Welch Foundation

