You may use the information and images contained in this document for non-commercial, personal, or educational purposes only, provided that you (1) do not modify such information and (2) include proper citation. If material is used for other purposes, you must obtain written permission from the author(s) to use the copyrighted material prior to its use.

Strong Interpopulation Divergence and Low Effective Population Sizes in Texas Alligator Snapping Turtles (*Macrochelys temninckil*)

Mandi Gordon^{1,*}, Alexander R. Krohn², David Rosenbaum³, Eric Munscher⁴, Viviana Ricardez⁵ Carl J. Franklin⁵, J.J. Apodaca², Louisa Collins², George J. Guillen^{1,6}, Jenny W. Oakley¹, Daniel Saenz⁷, Tom Sankey⁴, Christopher M. Schalk⁷, Sal Scibetta⁵, Arron Tuggle⁴

¹University of Houston-Clear Lake, Environmental Institute of Houston, Houston, Texas, USA
²Tangled Bank Conservation, Asheville, North Carolina, USA.
³Stephen F. Austin State University, Department of Forestry, Nacogdoches, Texas, USA
⁴SWCA Environmental Consultants, Houston, Texas, USA
⁵Texas Turtles, Grand Prairie, Texas, USA
⁶University of Houston-Clear Lake, College of Science and Engineering, Houston, Texas, USA
⁷U.S. Forest Service, Southern Research Station, Nacogdoches, Texas, USA
*gordon@uhcl.edu

The Wildlife Society Annual Conference Clear Lake Baltimore, MD; October 21, 2024

Acknowledgements

Field Technicians, Students, and Volunteers:

A. Alvarez, J. M. Arnett, D. Bontrager, S. Bullard, J. Carlson, D. Davidson, D. DeChellis, G. Dennis, G. Frederick, K. Garcia, B. Giles, J. Hamilton, T. Hackemack, N. Hughes, I. Johnson, J. Kennebeck-Miller, J. Kittle, S. Lesher, I. Marzullo, T. McKenzie, J. Nagro, V. Ontiveros, A. Pelletier, S. Ross, S. Schrock, L. C. St. Andrews, J. Swanson, T. Thomisee, C. Turner, M. VanBemmel, H. Welshoff, R. Wrast, E. Yargeau, and the volunteers of Texas Turtles and the Turtle Survival Alliance's North American Freshwater Turtle Research Group

Individual Project Partners:

C. Adams, R. Bailey, R. Belzung, A. Bennett, L. Borland, D. Bossert, F. Boyett, K. Brunson, J. Carey, T. Corbett, J. Cordova, C. Crawford, P. Crump, J. Delgado-Acevedo, K. Franks, J. Geisler, L. Gonzales, K. Hand, B. Heffernan, J. Jackson, J. Jiminez, C. Jones, B. Kirby, C. McDonald, C. Maldonado, W. Mangham, K. McKnight, T. Malzhan, J. Naivar, V. Neace, L.A. Overdyke, J. Poling, S. Ross, R. Rushin, G. Russell, J. Sanchez, C. Scanes, R. Speight, J. Watson, and D. Williams

Permitting, Institutional Protocols, and Access Permissions:

TPWD Scientific Collection Permits SPR-0321-0236, SPR-0519-087, SPR-0212-019, SPR-0620-082; UHCL IACUC Protocols 0320.001.R1-R2; SFASU IACUC project approval number 2019-11; special use and land access permits issued by TPWD, USFWS, USDA, and Texas River Authorities

https://www.uhcl.edu/environmental-institute/

Funded by:

Texas Comptroller of Public Accounts

Conservation Need

- Threatened status in Texas since 1987¹
- Recent SSA recommends threatened status²
- Texas represents SW range edge³⁻⁴
- Range edges hypothesized to exhibit decreased genetic diversity⁵
- Documented range contractions at N and W range edges⁶⁻⁹
- Reintroduction already a conservation strategy in parts of range¹⁰⁻¹⁸

¹Texas Register 1987, ²USFWS 2021, ³Dixon 2013, ⁴Hibbitts and Hibbitts 2016, ⁵Sexton et al. 2009, ⁶Reidle et al. 2008, ⁷Bluett et al. 2011, ⁸Baxley et al. 2014, ⁹Kessler et al. 2017, ¹⁰Moore et al. 2013, ¹¹Anthony et al. 2015, ¹²Townsend 2016, ¹³Dreslik et al. 2017, ¹⁴Glorioso et al. 2020, ¹⁵Garig et al. 2021, ¹⁶Hyder et al. 2021, ¹⁷Cozad et al. 2023, ¹⁸Voves et al. 2023

Importance of regional patterns to population structure

- Historically strong genetic structure¹⁹⁻²¹
- With strong divergence, recommend maintaining divergence²¹⁻²²
- Range-wide studies may miss regional patterns, especially with strong divergence²²
- Regional patterns may be important in anthropogenically altered watersheds (e.g., dams)²³
- 41 large dams in occupied Texas watersheds²⁴⁻²⁵
- Understanding how (or if) dams impact gene flow may help elucidate regional patterns

¹⁹Roman et al. 1999, ²⁰Eschelle et al. 2010, ²¹Apodaca et al. 2023, ²²Frankham et al. 2011,
²³Bárcenas-García et al. 2022, ²⁴Texas Register 2009, ²⁵TCEQ 2021

Study Objectives

- 1. Quantify existing population structure in the southwestern range edge
- 2. Measure genetic diversity within the existing population
- 3. Evaluate the potential effects of dams on genetic diversity

Field Methods and Sample Collection

- Population assessments at varying scales across east Texas watersheds (USGS 8-digit HUC)²⁶⁻³²
- Baited hoop traps (91.4–121.9 cm diameter; 182.9–243.8 cm length)
- Sex and midline straight carapace length (male, female, juvenile; mid-SCL)
- Biopsy: webbing between posterior left digits 4 & 5 (5-mm punch)
- Whole blood: caudal sinus or dorsal coccygeal vein (0.5 to 3.0-cc; 21–25 gauge, 19.05–38.10 mm length needle)
 - Sodium heparin anticoagulant
 - Stored on wet ice; frozen within 6-12
 - Longmire's solution (3.03 g TRIS, 9.31 g EDTA, 2.5 g SDS, 250 mL water)

²⁶Munscher et al. 2020, ²⁷Gordon et al. 2023a, ²⁸Gordon et al. 2023b, ²⁹Rosenbaum et al. 2023a, ³⁰Rosenbaum et al. 2023, ³¹Munscher et al. 2023, ³²Ricardez et al. unpublished data

Sequencing and Data Analyses

- Extractions using Quiagen Dneasy Blood & Tissue kit (protocol for muscle, blood, and skin)
- Constructed 3RAD libraries and barcoded samples ³³⁻³⁴ (i5 and i7 iTrue adapters)
- Removed individuals with < 1,000,000 raw reads and < 2,000 loci
- Identified single nucleotide polymorphisms (SNPs)
- Visualized and quantified population genetic structure using PCA (ggplot2) and fastSTRUCTURE³⁵⁻³⁶
- Quantified genetic diversity and population subdivision using *hierfstat* and NeEstimator³⁷⁻⁴¹
 - Observed heterozygosity (H₀), expected heterozygosity (H_s), within-population subdivision (F_{IS}), population connectedness (F_{ST}), effective population size (N_e)
- Sub-set F_{ST} data for up- and downstream comparisons in relation to dams

³³Bayona-Vásquez et al. 2019, ³⁴Glenn et al. 2019, ³⁵Wickham and Change 2016, ³⁶Raj et al. 2014,
³⁷Nei 1987, ³⁸Goudet 2005, ³⁹Weir and Goudet 2017, ⁴⁰Do et al. 2014, ⁴¹Waples and Do 2010

Age and Size Class Distribution

- Total # individuals analyzed: 215
- Sex and morphometrics known for 195 individuals

Genomic Structure – Principal Components Analysis

- Full dataset = 571,259 unfiltered SNPs on 196,109 RAD loci
- PCA of 45,440 SNPs showed 3 major groupings (e.g., metapopulations)

Genomic Structure – fastSTRUCTURE Analysis

 fastSTRUCTURE analyses on 30,064 SNPs confirmed three metapopulations (K = 3)

Diversity and Population Subdivision

Table 1 Sample size (n), observed heterozygosity (H₀; Nei 1987), within-population gene diversity (sometimes referred to as expected heterozygosity, H_s; Nei 1987), within-population subdivision (F_{IS}; Nei 1987), and effective population size (N_e; Waples 2022) of Alligator Snapping Turtles (AST; *Macrochelys temminckii*) in Texas. Statistics are calculated for the three metapopulations determined by fastSTRUCTURE analysis (Red+Cypress+Sulphur, Sabine+Neches, and Trinity+San Jacinto).

Population	n	Ho	Hs	FIS	Ne
Sabine+Neches (Sa+N)	97	0.0873	0.0904	0.0339	174.5 (117.6 - 311.2)
San Jacinto+Trinity (SJ+T)	100	0.0777	0.0864	0.1002	25.9 (25.9 - 25.9)
Red+Cypress+Sulphur (R+C+Su)	16	0.0696	0.0698	0.0038	444.4 (411.7 - 482.7)

Table 2 Population subdivision (F_{ST}) for Alligator Snapping Turtle (AST; *Macrochelys temminckii*)populations in Texas as identified by fastSTRUCTURE analyses. See Table 1 for sample sizes.

Population FST values	Red+Cypress+Sulphur (R+C+Su)	Sabine+Neches (Sa+N)	San Jacinto+Trinity (SJ+T)
Red+Cypress+Sulphur (R+C+Su)	NA	0.3885	0.4528
Sabine+Neches (Sa+N)	0.3885	NA	0.3110
San Jacinto+Trinity (SJ+T)	0.4528	0.3110	NA

Clear Lake

Potential Effect of Dams

- Permutation tests from upstream and downstream sites for:
 - Lake Livingston (*n* = 10 up; *n* = 4 down)
 - Richland-Chambers (n = 7 up; n = 3 down)
 - Blackburn Crossing (*n* = 3 up; *n* = 14 down)
 - Iron Bridge (*n* = 12 up; *n* = 2 down)
- Did not reveal any significant impact
- Overall F_{ST} was low
 - Lake Livingston $F_{ST} = 0.002 (p = 0.36)$
 - Richland-Chambers $F_{ST} = 0.027 (p = 0.10)$
 - Blackburn Crossing $F_{ST} = 0.023$ (p = 0.06)
 - Iron Bridge F_{ST} = 0.000 (*p* = 0.95)

Conclusions

- 1. Quantify existing population structure in the southwestern range edge
 - K = 3 distinct metapopulations in Texas watersheds
 - Some admixture between metapopulations
- 2. Measure genetic diversity within the existing population
 - H_0 , H_s , F_{IS} all low (0.0696-0.1002 across all values)
 - F_{ST} between metapopulations 0.311-0.452
 - $N_e < 100$ for at least one metapopulation (SJ+T)
- 3. Evaluate the potential effects of dams on genetic diversity
 - Results inconclusive
 - Artifact of long generation time and need for potentially 1,000s of years for detection

Mandi Gordon **Environmental Institute of Houston** University of Houston – Clear Lake 2700 Bay Area Blvd. Houston, TX, 77058 Gordon@uhcl.edu; 281-283-3794

Questions?

